Training and Evaluating Error Minimization Decision Rules for Statistical Machine Translation

نویسندگان

  • Ashish Venugopal
  • Andreas Zollmann
  • Alexander H. Waibel
چکیده

Decision rules that explicitly account for non-probabilistic evaluation metrics in machine translation typically require special training, often to estimate parameters in exponential models that govern the search space and the selection of candidate translations. While the traditional Maximum A Posteriori (MAP) decision rule can be optimized as a piecewise linear function in a greedy search of the parameter space, the Minimum Bayes Risk (MBR) decision rule is not well suited to this technique, a condition that makes past results difficult to compare. We present a novel training approach for non-tractable decision rules, allowing us to compare and evaluate these and other decision rules on a large scale translation task, taking advantage of the high dimensional parameter space available to the phrase based Pharaoh decoder. This comparison is timely, and important, as decoders evolve to represent more complex search space decisions and are evaluated against innovative evaluation metrics of translation quality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Training and Evaluating Error Minimization Rules for Statistical Machine Translation

Decision rules that explicitly account for non-probabilistic evaluation metrics in machine translation typically require special training, often to estimate parameters in exponential models that govern the search space and the selection of candidate translations. While the traditional Maximum A Posteriori (MAP) decision rule can be optimized as a piecewise linear function in a greedy search of ...

متن کامل

The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language

Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...

متن کامل

A Systematic Comparison of Training Criteria for Statistical Machine Translation

We address the problem of training the free parameters of a statistical machine translation system. We show significant improvements over a state-of-the-art minimum error rate training baseline on a large ChineseEnglish translation task. We present novel training criteria based on maximum likelihood estimation and expected loss computation. Additionally, we compare the maximum a-posteriori deci...

متن کامل

Bayes Decision Rules and Confidence Measures for Statistical Machine Translation

In this paper, we re-visit the foundations of the statistical approach to machine translation and study two forms of the Bayes decision rule: the common rule for minimizing the number of string errors and a novel rule for minimizing the number of symbol errors. The Bayes decision rule for minimizing the number of string errors is widely used, but its justification is rarely questioned. We study...

متن کامل

Structured Ramp Loss Minimization for Machine Translation

This paper seeks to close the gap between training algorithms used in statistical machine translation and machine learning, specifically the framework of empirical risk minimization. We review well-known algorithms, arguing that they do not optimize the loss functions they are assumed to optimize when applied to machine translation. Instead, most have implicit connections to particular forms of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005